Learning with $\ell^{0}$-Graph: $\ell^{0}$-Induced Sparse Subspace Clustering

نویسندگان

  • Yingzhen Yang
  • Jiashi Feng
  • Jianchao Yang
  • Thomas S. Huang
چکیده

ℓ 1-graph [19, 4], a sparse graph built by reconstructing each datum with all the other data using sparse representation , has been demonstrated to be effective in clustering high dimensional data and recovering independent subspaces from which the data are drawn. It is well known that ℓ 1-norm used in ℓ 1-graph is a convex relaxation of ℓ 0-norm for enforcing the sparsity. In order to handle general cases when the subspaces are not independent and follow the original principle of sparse representation, we propose a novel ℓ 0-graph that employs ℓ 0-norm to encourage the sparsity of the constructed graph, and develop a proximal method to solve the associated optimization problem with the proved guarantee of convergence. Extensive experimental results on various data sets demonstrate the superiority of ℓ 0-graph compared to other competing clustering methods including ℓ 1-graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Auto-tuning Method for Run-time Data Transformation for Sparse Matrix-Vector Multiplication

In this paper, we research the run-time sparse matrix data transformation from Compressed Row Storage (CRS) to Coordinate (COO) storage and an ELL (ELLPACK/ITPACK) format with OpenMP parallelization for sparse matrix-vector multiplication (SpMV). We propose an auto-tuning (AT) method by using the Dmat i Rell graph, which plots the derivation/average for the number of non-zero elements per row (...

متن کامل

Representation of $H$-closed monoreflections in archimedean $ell$-groups with weak unit

 The category of the title is called $mathcal{W}$. This has all free objects $F(I)$ ($I$ a set). For an object class $mathcal{A}$, $Hmathcal{A}$ consists of all homomorphic images of $mathcal{A}$-objects. This note continues the study of the $H$-closed monoreflections $(mathcal{R}, r)$ (meaning $Hmathcal{R} = mathcal{R}$), about which we show ({em inter alia}): $A in mathcal{A}$ if and  only if...

متن کامل

Recovery of sparsest signals via $\ell^q$-minimization

In this paper, it is proved that every s-sparse vector x ∈ R can be exactly recovered from the measurement vector z = Ax ∈ R via some l-minimization with 0 < q ≤ 1, as soon as each s-sparse vector x ∈ R n is uniquely determined by the measurement z.

متن کامل

Packing and covering induced subdivisions

A graph class $\mathcal{F}$ has the induced Erd\H{o}s-P\'osa property if there exists a function $f$ such that for every graph $G$ and every positive integer $k$, $G$ contains either $k$ pairwise vertex-disjoint induced subgraphs that belong to $\mathcal{F}$, or a vertex set of size at most $f(k)$ hitting all induced copies of graphs in $\mathcal{F}$. Kim and Kwon (SODA'18) showed that for a cy...

متن کامل

Graph Connectivity in Noisy Sparse Subspace Clustering

Subspace clustering is the problem of clustering data points into a union of lowdimensional linear/affine subspaces. It is the mathematical abstraction of many important problems in computer vision, image processing and machine learning. A line of recent work [4, 19, 24, 20] provided strong theoretical guarantee for sparse subspace clustering [4], the state-of-the-art algorithm for subspace clu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015